Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symplectic Stiefel manifold: tractable metrics, second-order geometry and Newton's methods (2406.14299v1)

Published 20 Jun 2024 in math.OC, cs.NA, math.NA, math.SG, and quant-ph

Abstract: Optimization under the symplecticity constraint is an approach for solving various problems in quantum physics and scientific computing. Building on the results that this optimization problem can be transformed into an unconstrained problem on the symplectic Stiefel manifold, we construct geometric ingredients for Riemannian optimization with a new family of Riemannian metrics called tractable metrics and develop Riemannian Newton schemes. The newly obtained ingredients do not only generalize several existing results but also provide us with freedom to choose a suitable metric for each problem. To the best of our knowledge, this is the first try to develop the explicit second-order geometry and Newton's methods on the symplectic Stiefel manifold. For the Riemannian Newton method, we first consider novel operator-valued formulas for computing the Riemannian Hessian of a~cost function, which further allows the manifold to be endowed with a weighted Euclidean metric that can provide a preconditioning effect. We then solve the resulting Newton equation, as the central step of Newton's methods, directly via transforming it into a~saddle point problem followed by vectorization, or iteratively via applying any matrix-free iterative method either to the operator Newton equation or its saddle point formulation. Finally, we propose a hybrid Riemannian Newton optimization algorithm that enjoys both global convergence and quadratic/superlinear local convergence at the final stage. Various numerical experiments are presented to validate the proposed methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.