Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation (2406.14235v3)

Published 20 Jun 2024 in cs.CV and cs.RO

Abstract: Learning generalizable visual representations across different embodied environments is essential for effective robotic manipulation in real-world scenarios. However, the limited scale and diversity of robot demonstration data pose a significant challenge. Recent research has explored leveraging large-scale human activity data for pre-training, but the substantial morphological differences between humans and robots introduce a significant human-robot domain discrepancy, hindering the generalization of these models to downstream manipulation tasks. To overcome this, we propose a novel adaptation paradigm that leverages readily available paired human-robot video data to bridge the domain gap. Our method employs a human-robot contrastive alignment loss to align the semantics of human and robot videos, adapting pre-trained models to the robot domain in a parameter-efficient manner. Experiments on 20 simulated tasks across two different benchmarks and five real-world tasks demonstrate significant improvements. These results span both single-task and language-conditioned multi-task settings, evaluated using two different pre-trained models. Compared to existing pre-trained models, our adaptation method improves the average success rate by over 7% across multiple tasks on both simulated benchmarks and real-world evaluations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.