Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Optimizing Novelty of Top-k Recommendations using Large Language Models and Reinforcement Learning (2406.14169v1)

Published 20 Jun 2024 in cs.IR and cs.LG

Abstract: Given an input query, a recommendation model is trained using user feedback data (e.g., click data) to output a ranked list of items. In real-world systems, besides accuracy, an important consideration for a new model is novelty of its top-k recommendations w.r.t. an existing deployed model. However, novelty of top-k items is a difficult goal to optimize a model for, since it involves a non-differentiable sorting operation on the model's predictions. Moreover, novel items, by definition, do not have any user feedback data. Given the semantic capabilities of LLMs, we address these problems using a reinforcement learning (RL) formulation where LLMs provide feedback for the novel items. However, given millions of candidate items, the sample complexity of a standard RL algorithm can be prohibitively high. To reduce sample complexity, we reduce the top-k list reward to a set of item-wise rewards and reformulate the state space to consist of <query, item> tuples such that the action space is reduced to a binary decision; and show that this reformulation results in a significantly lower complexity when the number of items is large. We evaluate the proposed algorithm on improving novelty for a query-ad recommendation task on a large-scale search engine. Compared to supervised finetuning on recent <query, ad> pairs, the proposed RL-based algorithm leads to significant novelty gains with minimal loss in recall. We obtain similar results on the ORCAS query-webpage matching dataset and a product recommendation dataset based on Amazon reviews.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: