Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tractable Equilibrium Computation in Markov Games through Risk Aversion (2406.14156v2)

Published 20 Jun 2024 in cs.GT, cs.LG, and cs.MA

Abstract: A significant roadblock to the development of principled multi-agent reinforcement learning is the fact that desired solution concepts like Nash equilibria may be intractable to compute. To overcome this obstacle, we take inspiration from behavioral economics and show that -- by imbuing agents with important features of human decision-making like risk aversion and bounded rationality -- a class of risk-averse quantal response equilibria (RQE) become tractable to compute in all $n$-player matrix and finite-horizon Markov games. In particular, we show that they emerge as the endpoint of no-regret learning in suitably adjusted versions of the games. Crucially, the class of computationally tractable RQE is independent of the underlying game structure and only depends on agents' degree of risk-aversion and bounded rationality. To validate the richness of this class of solution concepts we show that it captures peoples' patterns of play in a number of 2-player matrix games previously studied in experimental economics. Furthermore, we give a first analysis of the sample complexity of computing these equilibria in finite-horizon Markov games when one has access to a generative model and validate our findings on a simple multi-agent reinforcement learning benchmark.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube