Papers
Topics
Authors
Recent
2000 character limit reached

Emotion-aware Personalized Music Recommendation with a Heterogeneity-aware Deep Bayesian Network (2406.14090v2)

Published 20 Jun 2024 in cs.AI

Abstract: Music recommender systems play a critical role in music streaming platforms by providing users with music that they are likely to enjoy. Recent studies have shown that user emotions can influence users' preferences for music moods. However, existing emotion-aware music recommender systems (EMRSs) explicitly or implicitly assume that users' actual emotional states expressed through identical emotional words are homogeneous. They also assume that users' music mood preferences are homogeneous under the same emotional state. In this article, we propose four types of heterogeneity that an EMRS should account for: emotion heterogeneity across users, emotion heterogeneity within a user, music mood preference heterogeneity across users, and music mood preference heterogeneity within a user. We further propose a Heterogeneity-aware Deep Bayesian Network (HDBN) to model these assumptions. The HDBN mimics a user's decision process of choosing music with four components: personalized prior user emotion distribution modeling, posterior user emotion distribution modeling, user grouping, and Bayesian neural network-based music mood preference prediction. We constructed two datasets, called EmoMusicLJ and EmoMusicLJ-small, to validate our method. Extensive experiments demonstrate that our method significantly outperforms baseline approaches on metrics of HR, Precision, NDCG, and MRR. Ablation studies and case studies further validate the effectiveness of our HDBN. The source code and datasets are available at https://github.com/jingrk/HDBN.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.