Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients II: finite moments and higher-order schemes (2406.14065v2)

Published 20 Jun 2024 in math.NA, cs.NA, and math.PR

Abstract: This paper is the second in a series of works on weak convergence of one-step schemes for solving stochastic differential equations (SDEs) with one-sided Lipschitz conditions. It is known that the super-linear coefficients may lead to a blowup of moments of solutions and numerical solutions and thus affect the convergence of numerical methods. Wang et al. (2023, IMA J. Numer. Anal.) have analyzed weak convergence of one-step numerical schemes when solutions to SDEs have all finite moments. Therein some modified Euler schemes have been discussed about their weak convergence orders. In this work, we explore the effects of limited orders of moments on the weak convergence of a family of explicit schemes. The schemes are based on approximations/modifications of terms in the Ito-Talyor expansion. We provide a systematic but simple way to establish weak convergence orders for these schemes. We present several numerical examples of these schemes and show their weak convergence orders.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.