Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An agent-based model of behaviour change calibrated to reversal learning data (2406.14062v1)

Published 20 Jun 2024 in q-bio.QM, physics.bio-ph, and stat.CO

Abstract: Behaviour change lies at the heart of many observable collective phenomena such as the transmission and control of infectious diseases, adoption of public health policies, and migration of animals to new habitats. Representing the process of individual behaviour change in computer simulations of these phenomena remains an open challenge. Often, computational models use phenomenological implementations with limited support from behavioural data. Without a strong connection to observable quantities, such models have limited utility for simulating observed and counterfactual scenarios of emergent phenomena because they cannot be validated or calibrated. Here, we present a simple stochastic individual-based model of reversal learning that captures fundamental properties of individual behaviour change, namely, the capacity to learn based on accumulated reward signals, and the transient persistence of learned behaviour after rewards are removed or altered. The model has only two parameters, and we use approximate Bayesian computation to demonstrate that they are fully identifiable from empirical reversal learning time series data. Finally, we demonstrate how the model can be extended to account for the increased complexity of behavioural dynamics over longer time scales involving fluctuating stimuli. This work is a step towards the development and evaluation of fully identifiable individual-level behaviour change models that can function as validated submodels for complex simulations of collective behaviour change.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com