Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Open Problem: Anytime Convergence Rate of Gradient Descent (2406.13888v1)

Published 19 Jun 2024 in math.OC and cs.LG

Abstract: Recent results show that vanilla gradient descent can be accelerated for smooth convex objectives, merely by changing the stepsize sequence. We show that this can lead to surprisingly large errors indefinitely, and therefore ask: Is there any stepsize schedule for gradient descent that accelerates the classic $\mathcal{O}(1/T)$ convergence rate, at \emph{any} stopping time $T$?

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com