IG-CFAT: An Improved GAN-Based Framework for Effectively Exploiting Transformers in Real-World Image Super-Resolution (2406.13815v4)
Abstract: In the field of single image super-resolution (SISR), transformer-based models, have demonstrated significant advancements. However, the potential and efficiency of these models in applied fields such as real-world image super-resolution have been less noticed and there are substantial opportunities for improvement. Recently, composite fusion attention transformer (CFAT), outperformed previous state-of-the-art (SOTA) models in classic image super-resolution. In this paper, we propose a novel GAN-based framework by incorporating the CFAT model to effectively exploit the performance of transformers in real-world image super-resolution. In our proposed approach, we integrate a semantic-aware discriminator to reconstruct fine details more accurately and employ an adaptive degradation model to better simulate real-world degradations. Moreover, we introduce a new combination of loss functions by adding wavelet loss to loss functions of GAN-based models to better recover high-frequency details. Empirical results demonstrate that IG-CFAT significantly outperforms existing SOTA models in both quantitative and qualitative metrics. Our proposed model revolutionizes the field of real-world image super-resolution and demonstrates substantially better performance in recovering fine details and generating realistic textures. The introduction of IG-CFAT offers a robust and adaptable solution for real-world image super-resolution tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.