Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

IG-CFAT: An Improved GAN-Based Framework for Effectively Exploiting Transformers in Real-World Image Super-Resolution (2406.13815v4)

Published 19 Jun 2024 in eess.IV and cs.CV

Abstract: In the field of single image super-resolution (SISR), transformer-based models, have demonstrated significant advancements. However, the potential and efficiency of these models in applied fields such as real-world image super-resolution have been less noticed and there are substantial opportunities for improvement. Recently, composite fusion attention transformer (CFAT), outperformed previous state-of-the-art (SOTA) models in classic image super-resolution. In this paper, we propose a novel GAN-based framework by incorporating the CFAT model to effectively exploit the performance of transformers in real-world image super-resolution. In our proposed approach, we integrate a semantic-aware discriminator to reconstruct fine details more accurately and employ an adaptive degradation model to better simulate real-world degradations. Moreover, we introduce a new combination of loss functions by adding wavelet loss to loss functions of GAN-based models to better recover high-frequency details. Empirical results demonstrate that IG-CFAT significantly outperforms existing SOTA models in both quantitative and qualitative metrics. Our proposed model revolutionizes the field of real-world image super-resolution and demonstrates substantially better performance in recovering fine details and generating realistic textures. The introduction of IG-CFAT offers a robust and adaptable solution for real-world image super-resolution tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube