Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Efficacy of Conversational Artificial Intelligence in Rectifying the Theory of Mind and Autonomy Biases: Comparative Analysis (2406.13813v5)

Published 19 Jun 2024 in cs.CY and cs.HC

Abstract: Background: The increasing deployment of Conversational Artificial Intelligence (CAI) in mental health interventions necessitates an evaluation of their efficacy in rectifying cognitive biases and recognizing affect in human-AI interactions. These biases, including theory of mind and autonomy biases, can exacerbate mental health conditions such as depression and anxiety. Objective: This study aimed to assess the effectiveness of therapeutic chatbots (Wysa, Youper) versus general-purpose LLMs (GPT-3.5, GPT-4, Gemini Pro) in identifying and rectifying cognitive biases and recognizing affect in user interactions. Methods: The study employed virtual case scenarios simulating typical user-bot interactions. Cognitive biases assessed included theory of mind biases (anthropomorphism, overtrust, attribution) and autonomy biases (illusion of control, fundamental attribution error, just-world hypothesis). Responses were evaluated on accuracy, therapeutic quality, and adherence to Cognitive Behavioral Therapy (CBT) principles, using an ordinal scale. The evaluation involved double review by cognitive scientists and a clinical psychologist. Results: The study revealed that general-purpose chatbots outperformed therapeutic chatbots in rectifying cognitive biases, particularly in overtrust bias, fundamental attribution error, and just-world hypothesis. GPT-4 achieved the highest scores across all biases, while therapeutic bots like Wysa scored the lowest. Affect recognition showed similar trends, with general-purpose bots outperforming therapeutic bots in four out of six biases. However, the results highlight the need for further refinement of therapeutic chatbots to enhance their efficacy and ensure safe, effective use in digital mental health interventions. Future research should focus on improving affective response and addressing ethical considerations in AI-based therapy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.