Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

LIT: Large Language Model Driven Intention Tracking for Proactive Human-Robot Collaboration -- A Robot Sous-Chef Application (2406.13787v1)

Published 19 Jun 2024 in cs.RO and cs.CV

Abstract: LLMs (LLM) and Vision LLMs (VLM) enable robots to ground natural language prompts into control actions to achieve tasks in an open world. However, when applied to a long-horizon collaborative task, this formulation results in excessive prompting for initiating or clarifying robot actions at every step of the task. We propose Language-driven Intention Tracking (LIT), leveraging LLMs and VLMs to model the human user's long-term behavior and to predict the next human intention to guide the robot for proactive collaboration. We demonstrate smooth coordination between a LIT-based collaborative robot and the human user in collaborative cooking tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.