Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning (2406.13606v1)

Published 19 Jun 2024 in cs.CV

Abstract: Remote sensing change detection (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images, and has an outstanding value for local development monitoring. Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest. Despite the satisfactory performance achieved, the lack of knowledge in the frequency domain limits the further improvement of model performance. In this paper, we propose DDLNet, a RSCD network based on dual-domain learning (i.e., frequency and spatial domains). In particular, we design a Frequency-domain Enhancement Module (FEM) to capture frequency components from the input bi-temporal images using Discrete Cosine Transform (DCT) and thus enhance the changes of interest. Besides, we devise a Spatial-domain Recovery Module (SRM) to fuse spatiotemporal features for reconstructing spatial details of change representations. Extensive experiments on three benchmark RSCD datasets demonstrate that the proposed method achieves state-of-the-art performance and reaches a more satisfactory accuracy-efficiency trade-off. Our code is publicly available at https://github.com/xwmaxwma/rschange.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com