Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

BoA: Attention-aware Post-training Quantization without Backpropagation (2406.13474v3)

Published 19 Jun 2024 in cs.LG and cs.AI

Abstract: Post-training quantization (PTQ) is a promising solution for deploying LLMs on resource-constrained devices. Early methods developed for small-scale networks, such as ResNet, rely on gradient-based optimization, which becomes impractical for hyper-scale LLMs with billions of parameters. While recently proposed backpropagation-free or transformation-based methods alleviate this issue, they ignore inter-layer interactions or use the naive nearest-rounding-based quantized weight assignment to save the heavy computational cost of weight optimization. In this paper, we introduce a novel backpropagation-free PTQ algorithm that optimizes quantized weights by considering inter-layer dependencies. The key innovation is the development of attention-aware Hessian matrices that capture inter-layer interactions within the attention module. Extensive experiments demonstrate that our approach not only outperforms existing weight quantization methods but also shows good synergy with conventional methods to suppress activation outliers, leading to state-of-the-art weight-activation quantization performance. The code will be available at https://github.com/SamsungLabs/BoA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.