Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Structural Generalization in Neural Machine Translation (2406.13363v1)

Published 19 Jun 2024 in cs.CL

Abstract: Compositional generalization refers to the ability to generalize to novel combinations of previously observed words and syntactic structures. Since it is regarded as a desired property of neural models, recent work has assessed compositional generalization in machine translation as well as semantic parsing. However, previous evaluations with machine translation have focused mostly on lexical generalization (i.e., generalization to unseen combinations of known words). Thus, it remains unclear to what extent models can translate sentences that require structural generalization (i.e., generalization to different sorts of syntactic structures). To address this question, we construct SGET, a machine translation dataset covering various types of compositional generalization with control of words and sentence structures. We evaluate neural machine translation models on SGET and show that they struggle more in structural generalization than in lexical generalization. We also find different performance trends in semantic parsing and machine translation, which indicates the importance of evaluations across various tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.