Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enhancing Cross-Prompt Transferability in Vision-Language Models through Contextual Injection of Target Tokens

Published 19 Jun 2024 in cs.MM and cs.LG | (2406.13294v1)

Abstract: Vision-LLMs (VLMs) seamlessly integrate visual and textual data to perform tasks such as image classification, caption generation, and visual question answering. However, adversarial images often struggle to deceive all prompts effectively in the context of cross-prompt migration attacks, as the probability distribution of the tokens in these images tends to favor the semantics of the original image rather than the target tokens. To address this challenge, we propose a Contextual-Injection Attack (CIA) that employs gradient-based perturbation to inject target tokens into both visual and textual contexts, thereby improving the probability distribution of the target tokens. By shifting the contextual semantics towards the target tokens instead of the original image semantics, CIA enhances the cross-prompt transferability of adversarial images.Extensive experiments on the BLIP2, InstructBLIP, and LLaVA models show that CIA outperforms existing methods in cross-prompt transferability, demonstrating its potential for more effective adversarial strategies in VLMs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.