Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ModelMix: A New Model-Mixup Strategy to Minimize Vicinal Risk across Tasks for Few-scribble based Cardiac Segmentation (2406.13237v1)

Published 19 Jun 2024 in cs.CV

Abstract: Pixel-level dense labeling is both resource-intensive and time-consuming, whereas weak labels such as scribble present a more feasible alternative to full annotations. However, training segmentation networks with weak supervision from scribbles remains challenging. Inspired by the fact that different segmentation tasks can be correlated with each other, we introduce a new approach to few-scribble supervised segmentation based on model parameter interpolation, termed as ModelMix. Leveraging the prior knowledge that linearly interpolating convolution kernels and bias terms should result in linear interpolations of the corresponding feature vectors, ModelMix constructs virtual models using convex combinations of convolutional parameters from separate encoders. We then regularize the model set to minimize vicinal risk across tasks in both unsupervised and scribble-supervised way. Validated on three open datasets, i.e., ACDC, MSCMRseg, and MyoPS, our few-scribble guided ModelMix significantly surpasses the performance of the state-of-the-art scribble supervised methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com