Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Collaborative Semantics of Language Model-Driven Recommendations via Graph-Aware Learning (2406.13235v1)

Published 19 Jun 2024 in cs.IR and cs.AI

Abstract: LLMs are increasingly prominent in the recommendation systems domain. Existing studies usually utilize in-context learning or supervised fine-tuning on task-specific data to align LLMs into recommendations. However, the substantial bias in semantic spaces between language processing tasks and recommendation tasks poses a nonnegligible challenge. Specifically, without the adequate capturing ability of collaborative information, existing modeling paradigms struggle to capture behavior patterns within community groups, leading to LLMs' ineffectiveness in discerning implicit interaction semantic in recommendation scenarios. To address this, we consider enhancing the learning capability of LLM-driven recommendation models for structured data, specifically by utilizing interaction graphs rich in collaborative semantics. We propose a Graph-Aware Learning for LLM-Driven Recommendations (GAL-Rec). GAL-Rec enhances the understanding of user-item collaborative semantics by imitating the intent of Graph Neural Networks (GNNs) to aggregate multi-hop information, thereby fully exploiting the substantial learning capacity of LLMs to independently address the complex graphs in the recommendation system. Sufficient experimental results on three real-world datasets demonstrate that GAL-Rec significantly enhances the comprehension of collaborative semantics, and improves recommendation performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube