Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Block-level Text Spotting with LLMs (2406.13208v1)

Published 19 Jun 2024 in cs.CV

Abstract: Text spotting has seen tremendous progress in recent years yielding performant techniques which can extract text at the character, word or line level. However, extracting blocks of text from images (block-level text spotting) is relatively unexplored. Blocks contain more context than individual lines, words or characters and so block-level text spotting would enhance downstream applications, such as translation, which benefit from added context. We propose a novel method, BTS-LLM (Block-level Text Spotting with LLMs), to identify text at the block level. BTS-LLM has three parts: 1) detecting and recognizing text at the line level, 2) grouping lines into blocks and 3) finding the best order of lines within a block using a LLM. We aim to exploit the strong semantic knowledge in LLMs for accurate block-level text spotting. Consequently if the text spotted is semantically meaningful but has been corrupted during text recognition, the LLM is also able to rectify mistakes in the text and produce a reconstruction of it.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.