Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Transferable Watermarking to Self-supervised Pre-trained Graph Encoders by Trigger Embeddings (2406.13177v3)

Published 19 Jun 2024 in cs.CR

Abstract: Recent years have witnessed the prosperous development of Graph Self-supervised Learning (GSSL), which enables to pre-train transferable foundation graph encoders. However, the easy-to-plug-in nature of such encoders makes them vulnerable to copyright infringement. To address this issue, we develop a novel watermarking framework to protect graph encoders in GSSL settings. The key idea is to force the encoder to map a set of specially crafted trigger instances into a unique compact cluster in the outputted embedding space during model pre-training. Consequently, when the encoder is stolen and concatenated with any downstream classifiers, the resulting model inherits the `backdoor' of the encoder and predicts the trigger instances to be in a single category with high probability regardless of the ground truth. Experimental results have shown that, the embedded watermark can be transferred to various downstream tasks in black-box settings, including node classification, link prediction and community detection, which forms a reliable watermark verification system for GSSL in reality. This approach also shows satisfactory performance in terms of model fidelity, reliability and robustness.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.