Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DLP: towards active defense against backdoor attacks with decoupled learning process (2406.13098v1)

Published 18 Jun 2024 in cs.CR

Abstract: Deep learning models are well known to be susceptible to backdoor attack, where the attacker only needs to provide a tampered dataset on which the triggers are injected. Models trained on the dataset will passively implant the backdoor, and triggers on the input can mislead the models during testing. Our study shows that the model shows different learning behaviors in clean and poisoned subsets during training. Based on this observation, we propose a general training pipeline to defend against backdoor attacks actively. Benign models can be trained from the unreliable dataset by decoupling the learning process into three stages, i.e., supervised learning, active unlearning, and active semi-supervised fine-tuning. The effectiveness of our approach has been shown in numerous experiments across various backdoor attacks and datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com