Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Synergizing Foundation Models and Federated Learning: A Survey (2406.12844v1)

Published 18 Jun 2024 in cs.LG and cs.AI

Abstract: The recent development of Foundation Models (FMs), represented by LLMs, vision transformers, and multimodal models, has been making a significant impact on both academia and industry. Compared with small-scale models, FMs have a much stronger demand for high-volume data during the pre-training phase. Although general FMs can be pre-trained on data collected from open sources such as the Internet, domain-specific FMs need proprietary data, posing a practical challenge regarding the amount of data available due to privacy concerns. Federated Learning (FL) is a collaborative learning paradigm that breaks the barrier of data availability from different participants. Therefore, it provides a promising solution to customize and adapt FMs to a wide range of domain-specific tasks using distributed datasets whilst preserving privacy. This survey paper discusses the potentials and challenges of synergizing FL and FMs and summarizes core techniques, future directions, and applications. A periodically updated paper collection on FM-FL is available at https://github.com/lishenghui/awesome-fm-fl.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.