Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Exploring the Robustness of Language Models for Tabular Question Answering via Attention Analysis (2406.12719v3)

Published 18 Jun 2024 in cs.CL and cs.AI

Abstract: LLMs, already shown to ace various text comprehension tasks, have also remarkably been shown to tackle table comprehension tasks without specific training. Building on earlier studies of LLMs for tabular tasks, we probe how in-context learning (ICL), model scale, instruction tuning, and domain bias affect Tabular QA (TQA) robustness by testing LLMs, under diverse augmentations and perturbations, on diverse domains: Wikipedia-based $\textbf{WTQ}$, financial $\textbf{TAT-QA}$, and scientific $\textbf{SCITAB}$. Although instruction tuning and larger, newer LLMs deliver stronger, more robust TQA performance, data contamination and reliability issues, especially on $\textbf{WTQ}$, remain unresolved. Through an in-depth attention analysis, we reveal a strong correlation between perturbation-induced shifts in attention dispersion and the drops in performance, with sensitivity peaking in the model's middle layers. We highlight the need for improved interpretable methodologies to develop more reliable LLMs for table comprehension.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube