Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Medical Image Synthesis: T1w MRI to Tau PET (2406.12632v2)

Published 18 Jun 2024 in eess.IV and cs.CV

Abstract: There is a demand for medical image synthesis or translation to generate synthetic images of missing modalities from available data. This need stems from challenges such as restricted access to high-cost imaging devices, government regulations, or failure to follow up with patients or study participants. In medical imaging, preserving high-level semantic features is often more critical than achieving pixel-level accuracy. Perceptual loss functions are widely employed to train medical image synthesis or translation models, as they quantify differences in high-level image features using a pre-trained feature extraction network. While 3D and 2.5D perceptual losses are used in 3D medical image synthesis, they face challenges, such as the lack of pre-trained 3D models or difficulties in balancing loss reduction across different planes. In this work, we focus on synthesizing 3D tau PET images from 3D T1-weighted MR images. We propose a cyclic 2.5D perceptual loss that sequentially computes the 2D average perceptual loss for each of the axial, coronal, and sagittal planes over epochs, with the cycle duration gradually decreasing. Additionally, we process tau PET images using by-manufacturer standardization to enhance the preservation of high-SUVR regions indicative of tau pathology and mitigate SUVR variability caused by inter-manufacturer differences. We combine the proposed loss with SSIM and MSE losses and demonstrate its effectiveness in improving both quantitative and qualitative performance across various generative models, including U-Net, UNETR, SwinUNETR, CycleGAN, and Pix2Pix.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com