Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Cyclic 2.5D Perceptual Loss for Cross-Modal 3D Medical Image Synthesis: T1w MRI to Tau PET (2406.12632v2)

Published 18 Jun 2024 in eess.IV and cs.CV

Abstract: There is a demand for medical image synthesis or translation to generate synthetic images of missing modalities from available data. This need stems from challenges such as restricted access to high-cost imaging devices, government regulations, or failure to follow up with patients or study participants. In medical imaging, preserving high-level semantic features is often more critical than achieving pixel-level accuracy. Perceptual loss functions are widely employed to train medical image synthesis or translation models, as they quantify differences in high-level image features using a pre-trained feature extraction network. While 3D and 2.5D perceptual losses are used in 3D medical image synthesis, they face challenges, such as the lack of pre-trained 3D models or difficulties in balancing loss reduction across different planes. In this work, we focus on synthesizing 3D tau PET images from 3D T1-weighted MR images. We propose a cyclic 2.5D perceptual loss that sequentially computes the 2D average perceptual loss for each of the axial, coronal, and sagittal planes over epochs, with the cycle duration gradually decreasing. Additionally, we process tau PET images using by-manufacturer standardization to enhance the preservation of high-SUVR regions indicative of tau pathology and mitigate SUVR variability caused by inter-manufacturer differences. We combine the proposed loss with SSIM and MSE losses and demonstrate its effectiveness in improving both quantitative and qualitative performance across various generative models, including U-Net, UNETR, SwinUNETR, CycleGAN, and Pix2Pix.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: