Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Reparameterizable Dual-Resolution Network for Real-time Semantic Segmentation (2406.12496v1)

Published 18 Jun 2024 in cs.CV

Abstract: Semantic segmentation plays a key role in applications such as autonomous driving and medical image. Although existing real-time semantic segmentation models achieve a commendable balance between accuracy and speed, their multi-path blocks still affect overall speed. To address this issue, this study proposes a Reparameterizable Dual-Resolution Network (RDRNet) dedicated to real-time semantic segmentation. Specifically, RDRNet employs a two-branch architecture, utilizing multi-path blocks during training and reparameterizing them into single-path blocks during inference, thereby enhancing both accuracy and inference speed simultaneously. Furthermore, we propose the Reparameterizable Pyramid Pooling Module (RPPM) to enhance the feature representation of the pyramid pooling module without increasing its inference time. Experimental results on the Cityscapes, CamVid, and Pascal VOC 2012 datasets demonstrate that RDRNet outperforms existing state-of-the-art models in terms of both performance and speed. The code is available at https://github.com/gyyang23/RDRNet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.