Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adversarial Multi-dueling Bandits (2406.12475v2)

Published 18 Jun 2024 in cs.LG

Abstract: We introduce the problem of regret minimization in adversarial multi-dueling bandits. While adversarial preferences have been studied in dueling bandits, they have not been explored in multi-dueling bandits. In this setting, the learner is required to select $m \geq 2$ arms at each round and observes as feedback the identity of the most preferred arm which is based on an arbitrary preference matrix chosen obliviously. We introduce a novel algorithm, MiDEX (Multi Dueling EXP3), to learn from such preference feedback that is assumed to be generated from a pairwise-subset choice model. We prove that the expected cumulative $T$-round regret of MiDEX compared to a Borda-winner from a set of $K$ arms is upper bounded by $O((K \log K){1/3} T{2/3})$. Moreover, we prove a lower bound of $\Omega(K{1/3} T{2/3})$ for the expected regret in this setting which demonstrates that our proposed algorithm is near-optimal.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets