Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MixDiff: Mixing Natural and Synthetic Images for Robust Self-Supervised Representations (2406.12368v2)

Published 18 Jun 2024 in cs.CV

Abstract: This paper introduces MixDiff, a new self-supervised learning (SSL) pre-training framework that combines real and synthetic images. Unlike traditional SSL methods that predominantly use real images, MixDiff uses a variant of Stable Diffusion to replace an augmented instance of a real image, facilitating the learning of cross real-synthetic image representations. Our key insight is that while models trained solely on synthetic images underperform, combining real and synthetic data leads to more robust and adaptable representations. Experiments show MixDiff enhances SimCLR, BarlowTwins, and DINO across various robustness datasets and domain transfer tasks, boosting SimCLR's ImageNet-1K accuracy by 4.56%. Our framework also demonstrates comparable performance without needing any augmentations, a surprising finding in SSL where augmentations are typically crucial.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com