Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting and Securing ML Solutions in Near-RT RIC: A Perspective of an xApp (2406.12299v1)

Published 18 Jun 2024 in cs.CR, cs.NI, cs.SY, and eess.SY

Abstract: Open Radio Access Networks (O-RAN) are emerging as a disruptive technology, revolutionising traditional mobile network architecture and deployments in the current 5G and the upcoming 6G era. Disaggregation of network architecture, inherent support for AI/ML workflows, cloud-native principles, scalability, and interoperability make O-RAN attractive to network providers for beyond-5G and 6G deployments. Notably, the ability to deploy custom applications, including Machine Learning (ML) solutions as xApps or rApps on the RAN Intelligent Controllers (RICs), has immense potential for network function and resource optimisation. However, the openness, nascent standards, and distributed architecture of O-RAN and RICs introduce numerous vulnerabilities exploitable through multiple attack vectors, which have not yet been fully explored. To address this gap and ensure robust systems before large-scale deployments, this work analyses the security of ML-based applications deployed on the RIC platform. We focus on potential attacks, defence mechanisms, and pave the way for future research towards a more robust RIC platform.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.