Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slot State Space Models (2406.12272v6)

Published 18 Jun 2024 in cs.AI

Abstract: Recent State Space Models (SSMs) such as S4, S5, and Mamba have shown remarkable computational benefits in long-range temporal dependency modeling. However, in many sequence modeling problems, the underlying process is inherently modular and it is of interest to have inductive biases that mimic this modular structure. In this paper, we introduce SlotSSMs, a novel framework for incorporating independent mechanisms into SSMs to preserve or encourage separation of information. Unlike conventional SSMs that maintain a monolithic state vector, SlotSSMs maintains the state as a collection of multiple vectors called slots. Crucially, the state transitions are performed independently per slot with sparse interactions across slots implemented via the bottleneck of self-attention. In experiments, we evaluate our model in object-centric learning, 3D visual reasoning, and long-context video understanding tasks, which involve modeling multiple objects and their long-range temporal dependencies. We find that our proposed design offers substantial performance gains over existing sequence modeling methods. Project page is available at https://slotssms.github.io/

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jindong Jiang (13 papers)
  2. Fei Deng (35 papers)
  3. Gautam Singh (19 papers)
  4. Minseung Lee (3 papers)
  5. Sungjin Ahn (51 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.