Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PFID: Privacy First Inference Delegation Framework for LLMs (2406.12238v1)

Published 18 Jun 2024 in cs.CL

Abstract: This paper introduces a novel privacy-preservation framework named PFID for LLMs that addresses critical privacy concerns by localizing user data through model sharding and singular value decomposition. When users are interacting with LLM systems, their prompts could be subject to being exposed to eavesdroppers within or outside LLM system providers who are interested in collecting users' input. In this work, we proposed a framework to camouflage user input, so as to alleviate privacy issues. Our framework proposes to place model shards on the client and the public server, we sent compressed hidden states instead of prompts to and from servers. Clients have held back information that can re-privatized the hidden states so that overall system performance is comparable to traditional LLMs services. Our framework was designed to be communication efficient, computation can be delegated to the local client so that the server's computation burden can be lightened. We conduct extensive experiments on machine translation tasks to verify our framework's performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube