Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Slicing Through Bias: Explaining Performance Gaps in Medical Image Analysis using Slice Discovery Methods (2406.12142v2)

Published 17 Jun 2024 in cs.LG, cs.AI, cs.CV, and cs.CY

Abstract: Machine learning models have achieved high overall accuracy in medical image analysis. However, performance disparities on specific patient groups pose challenges to their clinical utility, safety, and fairness. This can affect known patient groups - such as those based on sex, age, or disease subtype - as well as previously unknown and unlabeled groups. Furthermore, the root cause of such observed performance disparities is often challenging to uncover, hindering mitigation efforts. In this paper, to address these issues, we leverage Slice Discovery Methods (SDMs) to identify interpretable underperforming subsets of data and formulate hypotheses regarding the cause of observed performance disparities. We introduce a novel SDM and apply it in a case study on the classification of pneumothorax and atelectasis from chest x-rays. Our study demonstrates the effectiveness of SDMs in hypothesis formulation and yields an explanation of previously observed but unexplained performance disparities between male and female patients in widely used chest X-ray datasets and models. Our findings indicate shortcut learning in both classification tasks, through the presence of chest drains and ECG wires, respectively. Sex-based differences in the prevalence of these shortcut features appear to cause the observed classification performance gap, representing a previously underappreciated interaction between shortcut learning and model fairness analyses.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.