Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Deploying scalable traffic prediction models for efficient management in real-world large transportation networks during hurricane evacuations (2406.12119v1)

Published 17 Jun 2024 in cs.LG, cs.AI, and cs.SI

Abstract: Accurate traffic prediction is vital for effective traffic management during hurricane evacuation. This paper proposes a predictive modeling system that integrates Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM) models to capture both long-term congestion patterns and short-term speed patterns. Leveraging various input variables, including archived traffic data, spatial-temporal road network information, and hurricane forecast data, the framework is designed to address challenges posed by heterogeneous human behaviors, limited evacuation data, and hurricane event uncertainties. Deployed in a real-world traffic prediction system in Louisiana, the model achieved an 82% accuracy in predicting long-term congestion states over a 6-hour period during a 7-day hurricane-impacted duration. The short-term speed prediction model exhibited Mean Absolute Percentage Errors (MAPEs) ranging from 7% to 13% across evacuation horizons from 1 to 6 hours. Evaluation results underscore the model's potential to enhance traffic management during hurricane evacuations, and real-world deployment highlights its adaptability and scalability in diverse hurricane scenarios within extensive transportation networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.