Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deploying scalable traffic prediction models for efficient management in real-world large transportation networks during hurricane evacuations (2406.12119v1)

Published 17 Jun 2024 in cs.LG, cs.AI, and cs.SI

Abstract: Accurate traffic prediction is vital for effective traffic management during hurricane evacuation. This paper proposes a predictive modeling system that integrates Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM) models to capture both long-term congestion patterns and short-term speed patterns. Leveraging various input variables, including archived traffic data, spatial-temporal road network information, and hurricane forecast data, the framework is designed to address challenges posed by heterogeneous human behaviors, limited evacuation data, and hurricane event uncertainties. Deployed in a real-world traffic prediction system in Louisiana, the model achieved an 82% accuracy in predicting long-term congestion states over a 6-hour period during a 7-day hurricane-impacted duration. The short-term speed prediction model exhibited Mean Absolute Percentage Errors (MAPEs) ranging from 7% to 13% across evacuation horizons from 1 to 6 hours. Evaluation results underscore the model's potential to enhance traffic management during hurricane evacuations, and real-world deployment highlights its adaptability and scalability in diverse hurricane scenarios within extensive transportation networks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.