Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Knowledge-to-Jailbreak: Investigating Knowledge-driven Jailbreaking Attacks for Large Language Models (2406.11682v2)

Published 17 Jun 2024 in cs.CL, cs.AI, and cs.CR

Abstract: LLMs have been increasingly applied to various domains, which triggers increasing concerns about LLMs' safety on specialized domains, e.g. medicine. Despite prior explorations on general jailbreaking attacks, there are two challenges for applying existing attacks on testing the domain-specific safety of LLMs: (1) Lack of professional knowledge-driven attacks, (2) Insufficient coverage of domain knowledge. To bridge this gap, we propose a new task, knowledge-to-jailbreak, which aims to generate jailbreaking attacks from domain knowledge, requiring both attack effectiveness and knowledge relevance. We collect a large-scale dataset with 12,974 knowledge-jailbreak pairs and fine-tune a LLM as jailbreak-generator, to produce domain knowledge-specific jailbreaks. Experiments on 13 domains and 8 target LLMs demonstrate the effectiveness of jailbreak-generator in generating jailbreaks that are both threatening to the target LLMs and relevant to the given knowledge. We also apply our method to an out-of-domain knowledge base, showing that jailbreak-generator can generate jailbreaks that are comparable in harmfulness to those crafted by human experts. Data and code are available at: https://github.com/THU-KEG/Knowledge-to-Jailbreak/.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: