Papers
Topics
Authors
Recent
2000 character limit reached

Unveiling the Power of Source: Source-based Minimum Bayes Risk Decoding for Neural Machine Translation (2406.11632v5)

Published 17 Jun 2024 in cs.CL and cs.AI

Abstract: Maximum a posteriori decoding, a commonly used method for neural machine translation (NMT), aims to maximize the estimated posterior probability. However, high estimated probability does not always lead to high translation quality. Minimum Bayes Risk (MBR) decoding offers an alternative by seeking hypotheses with the highest expected utility. Inspired by Quality Estimation (QE) reranking which uses the QE model as a ranker we propose source-based MBR (sMBR) decoding, a novel approach that utilizes quasi-sources (generated via paraphrasing or back-translation) as ``support hypotheses'' and a reference-free quality estimation metric as the utility function, marking the first work to solely use sources in MBR decoding. Experiments show that sMBR outperforms QE reranking and the standard MBR decoding. Our findings suggest that sMBR is a promising approach for NMT decoding.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.