Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3 (2406.11380v3)

Published 17 Jun 2024 in cs.CL

Abstract: LLMs have shown promising results in a variety of literary tasks, often using complex memorized details of narration and fictional characters. In this work, we evaluate the ability of Llama-3 at attributing utterances of direct-speech to their speaker in novels. The LLM shows impressive results on a corpus of 28 novels, surpassing published results with ChatGPT and encoder-based baselines by a large margin. We then validate these results by assessing the impact of book memorization and annotation contamination. We found that these types of memorization do not explain the large performance gain, making Llama-3 the new state-of-the-art for quotation attribution in English literature. We release publicly our code and data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.