Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluating LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3 (2406.11380v3)

Published 17 Jun 2024 in cs.CL

Abstract: LLMs have shown promising results in a variety of literary tasks, often using complex memorized details of narration and fictional characters. In this work, we evaluate the ability of Llama-3 at attributing utterances of direct-speech to their speaker in novels. The LLM shows impressive results on a corpus of 28 novels, surpassing published results with ChatGPT and encoder-based baselines by a large margin. We then validate these results by assessing the impact of book memorization and annotation contamination. We found that these types of memorization do not explain the large performance gain, making Llama-3 the new state-of-the-art for quotation attribution in English literature. We release publicly our code and data.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.