Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

WaDec: Decompiling WebAssembly Using Large Language Model (2406.11346v3)

Published 17 Jun 2024 in cs.SE

Abstract: WebAssembly (abbreviated Wasm) has emerged as a cornerstone of web development, offering a compact binary format that allows high-performance applications to run at near-native speeds in web browsers. Despite its advantages, Wasm's binary nature presents significant challenges for developers and researchers, particularly regarding readability when debugging or analyzing web applications. Therefore, effective decompilation becomes crucial. Unfortunately, traditional decompilers often struggle with producing readable outputs. While some LLM-based decompilers have shown good compatibility with general binary files, they still face specific challenges when dealing with Wasm. In this paper, we introduce a novel approach, WaDec, which is the first use of a fine-tuned LLM to interpret and decompile Wasm binary code into a higher-level, more comprehensible source code representation. The LLM was meticulously fine-tuned using a specialized dataset of wat-c code snippets, employing self-supervised learning techniques. This enables WaDec to effectively decompile not only complete wat functions but also finer-grained wat code snippets. Our experiments demonstrate that WaDec markedly outperforms current state-of-the-art tools, offering substantial improvements across several metrics. It achieves a code inflation rate of only 3.34%, a dramatic 97% reduction compared to the state-of-the-art's 116.94%. Unlike baselines' output that cannot be directly compiled or executed, WaDec maintains a recompilability rate of 52.11%, a re-execution rate of 43.55%, and an output consistency of 27.15%. Additionally, it significantly exceeds state-of-the-art performance in AST edit distance similarity by 185%, cyclomatic complexity by 8%, and cosine similarity by 41%, achieving an average code similarity above 50%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Reddit Logo Streamline Icon: https://streamlinehq.com