Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Framework for Load Forecasting based on Pre-trained Large Language Model (2406.11336v2)

Published 17 Jun 2024 in eess.SY and cs.SY

Abstract: Accurate load forecasting is crucial for maintaining the power balance between generators and consumers,particularly with the increasing integration of renewable energy sources, which introduce significant intermittent volatility. With the advancement of data-driven methods, machine learning and deep learning models have become the predominant approaches for load forecasting tasks. In recent years, pre-trained LLMs have achieved significant progress, demonstrating superior performance across various fields. This paper proposes a load forecasting method based on LLMs, offering not only precise predictive capabilities but also broad and flexible applicability. Additionally, a data modeling method is introduced to effectively transform load sequence data into natural language suitable for LLM training. Furthermore, a data enhancement strategy is designed to mitigate the impact of LLM hallucinations on forecasting results. The effectiveness of the proposed method is validated using two real-world datasets. Compared to existing methods, our approach demonstrates state-of-the-art performance across all validation metrics.

Summary

We haven't generated a summary for this paper yet.