Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MFC-Bench: Benchmarking Multimodal Fact-Checking with Large Vision-Language Models (2406.11288v3)

Published 17 Jun 2024 in cs.CL and cs.CV

Abstract: Large vision-LLMs (LVLMs) have significantly improved multimodal reasoning tasks, such as visual question answering and image captioning. These models embed multimodal facts within their parameters, rather than relying on external knowledge bases to store factual information explicitly. However, the content discerned by LVLMs may deviate from factuality due to inherent bias or incorrect inference. To address this issue, we introduce MFC-Bench, a rigorous and comprehensive benchmark designed to evaluate the factual accuracy of LVLMs across three stages of verdict prediction for MFC: Manipulation, Out-of-Context, and Veracity Classification. Through our evaluation on MFC-Bench, we benchmarked a dozen diverse and representative LVLMs, uncovering that current models still fall short in multimodal fact-checking and demonstrate insensitivity to various forms of manipulated content. We hope that MFC-Bench could raise attention to the trustworthy AI potentially assisted by LVLMs in the future. The MFC-Bench and accompanying resources are publicly accessible at https://github.com/wskbest/MFC-Bench, contributing to ongoing research in the multimodal fact-checking field.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com