Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HEDE: Heritability estimation in high dimensions by Ensembling Debiased Estimators (2406.11184v1)

Published 17 Jun 2024 in stat.ME, math.ST, and stat.TH

Abstract: Estimating heritability remains a significant challenge in statistical genetics. Diverse approaches have emerged over the years that are broadly categorized as either random effects or fixed effects heritability methods. In this work, we focus on the latter. We propose HEDE, an ensemble approach to estimate heritability or the signal-to-noise ratio in high-dimensional linear models where the sample size and the dimension grow proportionally. Our method ensembles post-processed versions of the debiased lasso and debiased ridge estimators, and incorporates a data-driven strategy for hyperparameter selection that significantly boosts estimation performance. We establish rigorous consistency guarantees that hold despite adaptive tuning. Extensive simulations demonstrate our method's superiority over existing state-of-the-art methods across various signal structures and genetic architectures, ranging from sparse to relatively dense and from evenly to unevenly distributed signals. Furthermore, we discuss the advantages of fixed effects heritability estimation compared to random effects estimation. Our theoretical guarantees hold for realistic genotype distributions observed in genetic studies, where genotypes typically take on discrete values and are often well-modeled by sub-Gaussian distributed random variables. We establish our theoretical results by deriving uniform bounds, built upon the convex Gaussian min-max theorem, and leveraging universality results. Finally, we showcase the efficacy of our approach in estimating height and BMI heritability using the UK Biobank.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.