Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Analysis on Quantizing Diffusion Transformers (2406.11100v1)

Published 16 Jun 2024 in cs.CV

Abstract: Diffusion Models (DMs) utilize an iterative denoising process to transform random noise into synthetic data. Initally proposed with a UNet structure, DMs excel at producing images that are virtually indistinguishable with or without conditioned text prompts. Later transformer-only structure is composed with DMs to achieve better performance. Though Latent Diffusion Models (LDMs) reduce the computational requirement by denoising in a latent space, it is extremely expensive to inference images for any operating devices due to the shear volume of parameters and feature sizes. Post Training Quantization (PTQ) offers an immediate remedy for a smaller storage size and more memory-efficient computation during inferencing. Prior works address PTQ of DMs on UNet structures have addressed the challenges in calibrating parameters for both activations and weights via moderate optimization. In this work, we pioneer an efficient PTQ on transformer-only structure without any optimization. By analysing challenges in quantizing activations and weights for diffusion transformers, we propose a single-step sampling calibration on activations and adapt group-wise quantization on weights for low-bit quantization. We demonstrate the efficiency and effectiveness of proposed methods with preliminary experiments on conditional image generation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.