Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Latent Communication in Artificial Neural Networks (2406.11014v1)

Published 16 Jun 2024 in cs.LG and cs.AI

Abstract: As NNs permeate various scientific and industrial domains, understanding the universality and reusability of their representations becomes crucial. At their core, these networks create intermediate neural representations, indicated as latent spaces, of the input data and subsequently leverage them to perform specific downstream tasks. This dissertation focuses on the universality and reusability of neural representations. Do the latent representations crafted by a NN remain exclusive to a particular trained instance, or can they generalize across models, adapting to factors such as randomness during training, model architecture, or even data domain? This adaptive quality introduces the notion of Latent Communication -- a phenomenon that describes when representations can be unified or reused across neural spaces. A salient observation from our research is the emergence of similarities in latent representations, even when these originate from distinct or seemingly unrelated NNs. By exploiting a partial correspondence between the two data distributions that establishes a semantic link, we found that these representations can either be projected into a universal representation, coined as Relative Representation, or be directly translated from one space to another. Latent Communication allows for a bridge between independently trained NN, irrespective of their training regimen, architecture, or the data modality they were trained on -- as long as the data semantic content stays the same (e.g., images and their captions). This holds true for both generation, classification and retrieval downstream tasks; in supervised, weakly supervised, and unsupervised settings; and spans various data modalities including images, text, audio, and graphs -- showcasing the universality of the Latent Communication phenomenon. [...]

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets