Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Lifelong Dialogue Agents via Timeline-based Memory Management (2406.10996v3)

Published 16 Jun 2024 in cs.CL

Abstract: To achieve lifelong human-agent interaction, dialogue agents need to constantly memorize perceived information and properly retrieve it for response generation (RG). While prior studies focus on getting rid of outdated memories to improve retrieval quality, we argue that such memories provide rich, important contextual cues for RG (e.g., changes in user behaviors) in long-term conversations. We present THEANINE, a framework for LLM-based lifelong dialogue agents. THEANINE discards memory removal and manages large-scale memories by linking them based on their temporal and cause-effect relation. Enabled by this linking structure, THEANINE augments RG with memory timelines - series of memories representing the evolution or causality of relevant past events. Along with THEANINE, we introduce TeaFarm, a counterfactual-driven evaluation scheme, addressing the limitation of G-Eval and human efforts when assessing agent performance in integrating past memories into RG. A supplementary video for THEANINE and data for TeaFarm are at https://huggingface.co/spaces/ResearcherScholar/Theanine.

Citations (1)

Summary

We haven't generated a summary for this paper yet.