Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence (2406.10957v4)

Published 16 Jun 2024 in cs.CL

Abstract: Direct Preference Optimization (DPO) has emerged as a prominent algorithm for the direct and robust alignment of LLMs with human preferences, offering a more straightforward alternative to the complex Reinforcement Learning from Human Feedback (RLHF). Despite its promising efficacy, DPO faces a notable drawback: "verbosity", a common over-optimization phenomenon also observed in RLHF. While previous studies mainly attributed verbosity to biased labels within the data, we propose that the issue also stems from an inherent algorithmic length reliance in DPO. Specifically, we suggest that the discrepancy between sequence-level Kullback-Leibler (KL) divergences between chosen and rejected sequences, used in DPO, results in overestimated or underestimated rewards due to varying token lengths. Empirically, we utilize datasets with different label lengths to demonstrate the presence of biased rewards. We then introduce an effective downsampling approach, named SamPO, to eliminate potential length reliance. Our experimental evaluations, conducted across three LLMs of varying scales and a diverse array of conditional and open-ended benchmarks, highlight the efficacy of SamPO in mitigating verbosity, achieving improvements of 5% to 12% over DPO through debaised rewards. Our codes can be accessed at: https://github.com/LuJunru/SamPO/.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: