Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Identifying Query-Relevant Neurons in Large Language Models for Long-Form Texts (2406.10868v4)

Published 16 Jun 2024 in cs.CL

Abstract: LLMs possess vast amounts of knowledge within their parameters, prompting research into methods for locating and editing this knowledge. Previous work has largely focused on locating entity-related (often single-token) facts in smaller models. However, several key questions remain unanswered: (1) How can we effectively locate query-relevant neurons in decoder-only LLMs, such as Llama and Mistral? (2) How can we address the challenge of long-form (or free-form) text generation? (3) Are there localized knowledge regions in LLMs? In this study, we introduce Query-Relevant Neuron Cluster Attribution (QRNCA), a novel architecture-agnostic framework capable of identifying query-relevant neurons in LLMs. QRNCA allows for the examination of long-form answers beyond triplet facts by employing the proxy task of multi-choice question answering. To evaluate the effectiveness of our detected neurons, we build two multi-choice QA datasets spanning diverse domains and languages. Empirical evaluations demonstrate that our method outperforms baseline methods significantly. Further, analysis of neuron distributions reveals the presence of visible localized regions, particularly within different domains. Finally, we show potential applications of our detected neurons in knowledge editing and neuron-based prediction.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com