Papers
Topics
Authors
Recent
2000 character limit reached

Polynomial Chaos-based Stochastic Model Predictive Control: An Overview and Future Research Directions (2406.10734v1)

Published 15 Jun 2024 in eess.SY and cs.SY

Abstract: This article is devoted to providing a review of mathematical formulations in which Polynomial Chaos Theory (PCT) has been incorporated into stochastic model predictive control (SMPC). In the past decade, PCT has been shown to provide a computationally tractable way to perform complete and accurate uncertainty propagation through (smooth) nonlinear dynamic systems. As such, it represents a very useful computational tool for accelerating the computations needed in SMPC with time invariant uncertainties. It turns out that it can also be used to reduce complexity of chance constraints, which are an important component of SMPC. In this paper, we provide an overview of PCT and discuss how it can be applied in such time invariant settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.