Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multilingual Large Language Models and Curse of Multilinguality (2406.10602v2)

Published 15 Jun 2024 in cs.CL and cs.CY

Abstract: Multilingual LLMs have gained large popularity among NLP researchers and practitioners. These models, trained on huge datasets, show proficiency across various languages and demonstrate effectiveness in numerous downstream tasks. This paper navigates the landscape of multilingual LLMs, providing an introductory overview of their technical aspects. It explains underlying architectures, objective functions, pre-training data sources, and tokenization methods. This work explores the unique features of different model types: encoder-only (mBERT, XLM-R), decoder-only (XGLM, PALM, BLOOM, GPT-3), and encoder-decoder models (mT5, mBART). Additionally, it addresses one of the significant limitations of multilingual LLMs - the curse of multilinguality - and discusses current attempts to overcome it.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com