Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Image Classification in the Presence of Out-of-Distribution and Adversarial Samples Using Attractors in Neural Networks (2406.10579v1)

Published 15 Jun 2024 in cs.CV, cs.LG, and eess.IV

Abstract: The proper handling of out-of-distribution (OOD) samples in deep classifiers is a critical concern for ensuring the suitability of deep neural networks in safety-critical systems. Existing approaches developed for robust OOD detection in the presence of adversarial attacks lose their performance by increasing the perturbation levels. This study proposes a method for robust classification in the presence of OOD samples and adversarial attacks with high perturbation levels. The proposed approach utilizes a fully connected neural network that is trained to use training samples as its attractors, enhancing its robustness. This network has the ability to classify inputs and identify OOD samples as well. To evaluate this method, the network is trained on the MNIST dataset, and its performance is tested on adversarial examples. The results indicate that the network maintains its performance even when classifying adversarial examples, achieving 87.13% accuracy when dealing with highly perturbed MNIST test data. Furthermore, by using fashion-MNIST and CIFAR-10-bw as OOD samples, the network can distinguish these samples from MNIST samples with an accuracy of 98.84% and 99.28%, respectively. In the presence of severe adversarial attacks, these measures decrease slightly to 98.48% and 98.88%, indicating the robustness of the proposed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.