Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Hardware Accelerator Based on Medium Granularity Dataflow for SpTRSV (2406.10511v3)

Published 15 Jun 2024 in cs.DC, cs.AR, cs.NA, cs.PF, and math.NA

Abstract: Sparse triangular solve (SpTRSV) is widely used in various domains. Numerous studies have been conducted using CPUs, GPUs, and specific hardware accelerators, where dataflows can be categorized into coarse and fine granularity. Coarse dataflows offer good spatial locality but suffer from low parallelism, while fine dataflows provide high parallelism but disrupt the spatial structure, leading to increased nodes and poor data reuse. This paper proposes a novel hardware accelerator for SpTRSV or SpTRSV-like DAGs. The accelerator implements a medium granularity dataflow through hardware-software codesign and achieves both excellent spatial locality and high parallelism. Additionally, a partial sum caching mechanism is introduced to reduce the blocking frequency of processing elements (PEs), and a reordering algorithm of intra-node edges computation is developed to enhance data reuse. Experimental results on 245 benchmarks with node counts reaching up to 85,392 demonstrate that this work achieves average performance improvements of 7.0$\times$ (up to 27.8$\times$) over CPUs and 5.8$\times$ (up to 98.8$\times$) over GPUs. Compared to the state-of-the-art technique (DPU-v2), this work shows a 2.5$\times$ (up to 5.9$\times$) average performance improvement and 1.7$\times$ (up to 4.1$\times$) average energy efficiency enhancement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube