Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Efficient Neural Network Architectures for Image Compression (2406.10361v1)

Published 14 Jun 2024 in eess.IV

Abstract: Recent advances in learning-based image compression typically come at the cost of high complexity. Designing computationally efficient architectures remains an open challenge. In this paper, we empirically investigate the impact of different network designs in terms of rate-distortion performance and computational complexity. Our experiments involve testing various transforms, including convolutional neural networks and transformers, as well as various context models, including hierarchical, channel-wise, and space-channel context models. Based on the results, we present a series of efficient models, the final model of which has comparable performance to recent best-performing methods but with significantly lower complexity. Extensive experiments provide insights into the design of architectures for learned image compression and potential direction for future research. The code is available at \url{https://gitlab.com/viper-purdue/efficient-compression}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: