Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do as I do (Safely): Mitigating Task-Specific Fine-tuning Risks in Large Language Models (2406.10288v3)

Published 12 Jun 2024 in cs.CL and cs.LG

Abstract: Recent research shows that fine-tuning on benign instruction-following data can inadvertently undo the safety alignment process and increase a model's propensity to comply with harmful queries. While instruction-following fine-tuning is important, task-specific fine-tuning - where models are trained on datasets with clear ground truth answers (e.g., multiple choice questions) - can enhance model performance on specialized downstream tasks. Understanding and mitigating safety risks in the task-specific setting remains distinct from the instruction-following context due to structural differences in the data. Our work demonstrates how malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors, while maintaining an appearance of innocuity and reasonable downstream task performance. To address this issue, we propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data, showing this is significantly more effective and efficient than existing baselines at re-establishing safety alignment while maintaining similar task performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com