Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Selecting Interpretability Techniques for Healthcare Machine Learning models (2406.10213v1)

Published 14 Jun 2024 in cs.LG

Abstract: In healthcare there is a pursuit for employing interpretable algorithms to assist healthcare professionals in several decision scenarios. Following the Predictive, Descriptive and Relevant (PDR) framework, the definition of interpretable machine learning as a machine-learning model that explicitly and in a simple frame determines relationships either contained in data or learned by the model that are relevant for its functioning and the categorization of models by post-hoc, acquiring interpretability after training, or model-based, being intrinsically embedded in the algorithm design. We overview a selection of eight algorithms, both post-hoc and model-based, that can be used for such purposes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: